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Abstract. Using a variational procedure based on Lee-Low-Pines and Huybrechts canonical transforma-
tions, we study the stability region of two-dimensional bipolarons confined in a parabolic quantum dot,
subject to a uniform magnetic field. In the framework of our approach, we calculate the ground-state energy
for two-dimensional magnetobipolarons, together with the free polaron ground-state energy, by performing
a self consistent calculation. We then obtain the binding energy for two-dimensional magnetobipolarons, in
the usual way, to explore the properties of bipolaron formation in two-dimensional quantum dot structures.
The stability region is found to be very sensitive to the confinement length of the parabolic potential and
to the magnetic field strength, as well as to the material parameters α and η. The stability region is also
found to be remarkably enhanced by increasing the degree of spatial confinement and magnetic field. Our
results are both in qualitative and quantitative agreement with those found in the literature.

PACS. 71.38.Fp Large or Fröhlich polarons – 63.20.Kr Phonon-electron and phonon-phonon interactions

1 Introduction

It is a well-known fact that in nanostructures, such as
quantum wells (QW), quantum well wires (QWW) and
quantum dots (QD), in which the motion of electrons are
restricted in various directions, polaronic effects [1] arising
from the electron-phonon interaction as well as the effects
caused by the size quantization [2,3] on electronic energy
levels are enhanced due to the reduction of the dimen-
sionality of the system. Thus, particularly in QDs wherein
quantum confinement is imposed in all spatial dimensions,
it is crucial to consider the possibility of pairing two po-
larons induced from the attractive interaction mediated by
the electron-phonon coupling, since the most pronounced
effects due to electron-phonon interactions are found in
this system. Such a pairing is based on the fact that
at certain values of the material parameters, the attrac-
tive electron-phonon interaction overcomes the repulsive
Coulomb interaction between two electrons, and therefore
induces polaron pairings, referred to as bipolarons. Ac-
cordingly, one may expect that it is more likely to observe
stable bipolaron states in QDs than in QW and QWW
type nanostructures since competition between these two
types of interaction may result in favor of bipolaron for-
mation. This is due to not only the fact that of having
the lowest dimension among nanostructures, but also the
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possibility of decreasing its size in all directions, even if
the electron-phonon coupling is weak.

The bipolaron problem was first considered by
Pekar [4] and by Vinetskii and Gitterman [5]. Later, the
possible relevance of bipolarons in the context of high
temperature superconductivity was also suggested in var-
ious papers [6–10]. In these studies, several attempts by
using different techniques have been made to investigate
whether stable bipolaron states exist in three-(3D), two-
(2D) and also in one-(1D)dimensional systems, or not.
Following these works, systematic investigations on the
bipolaron stability region (BPSR) have been performed,
firstly by Adamowski [11] and subsequently by Verbist,
Peeters and Devreese [12], and by Bassani and Geddo [13]
in 2D and 3D bulk materials, and by many other au-
thors [14–23] in various systems. An overview of bipo-
laron research can be found in the proceedings of the
Pushchino Workshop [24], in a text-book by Alexandrov
and Mott [25], and furthermore, in a detailed review by
Devreese [26].

In the usual treatment of the large bipolaron theory,
material parameters such as the dimensionless electron-
phonon coupling strength α and the ratio of the high fre-
quency (ε∞) to static (ε0) dielectric constants, η = ε∞/ε0,
all play a central role in determining the stability region.
The procedure in determining the boundaries of this re-
gion is based on the fact that the energy of two inter-
acting polarons should be lower than those of two free
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polarons over certain critical values of α and η. In 3D
bulk materials, an upper bound for α and a lower bound
for η of 7.3 and 0.14, respectively, have been provided by
Adamowski [11] through a variational approach, and by
Verbist, Peeters and Devreese [12], of 6.8 and 0.14, re-
spectively, by using the Feynman path integral method.
In the case of purely 2D systems, Verbist et al. [12] have
performed binding energy calculations and found that the
transition between polaron and bipolaron states can be
realized in the region defined by the parameters α = 2.9
and η = 0.158, while Luczak et al. [22] have predicted that
this transition occurs at the values α = 3.5 and η = 0.158
within a variational approach based on a comparison with
Feynman free polaron energies. All the works cited above
have concentrated on determining the stability criterion
for bipolaron formation in 3D, 2D and also in 1D sys-
tems. However, there are a very few investigations in low
dimensional structures [27–31], particularly in QD systems
wherein in addition to the material parameters, one takes
into account the size of QD as a determinative parameter
to describe the bipolaron stability region. More recently,
Pokatilov et al. have examined the bipolaronic mechanism
in 3D spherical [28] and ellipsoidal [30] QDs with parabolic
confinement by using the Feynman’s path integral formal-
ism. They have pointed out that in nanostructures having
a size of the order of the polaron radius, it is possible
to find the stable bipolaron states even for intermediate
values of α (α ∼ 2).

The existence of a magnetic field in QDs is of particu-
lar importance since it enhances polaronic effects, and may
therefore lead to a significant enlargement of the bound-
aries of the bipolaron stability region. It can also be used
as an experimental probe to investigate both size and po-
laronic effects on electronic energy levels. In addition to
the above references, there have also been studies that in-
cludes the effects of magnetic fields on the bipolaron for-
mation in both 2D and 3D systems [32–41]. Among them,
the Feynman-Haken path integral approach to the mag-
netic field effect on the binding energy of bipolaron was
recently discussed in a series of papers [38,39]. A remark-
able decrease of the critical value of α due to magnetic
field was found. Magnetic field effects together with the
effect of spatial confinement on BPSR have been analyzed
in our previous paper [41], however the method that we
used to get information on the stability region for QD,
QWW and QW structures did not permit us to determine
an upper critical value of α. Here I shall present a different
method to overcome this problem.

In this paper, within the framework of Fröhlich large
bipolaron theory, I propose a variational procedure to an-
alyze the stability region of 2D bipolarons confined in a
2D parabolic QD potential subject to a uniform magnetic
field, based on Lee, Low, Pines and Huybrechts (LLP-H)
canonical transformations, where weak and strong cou-
pling variational results can be interpolated by an ad-
ditional variational parameter. These types of canonical
transformations we use were originally suggested by Lee
et al. [42], modified by Huybrechts [43], and widely used
for describing electron-phonon interactions in several sys-

tems, such as the free and bound polaron problem [44],
and very recently in a study on the ground- and first-
excited states of magnetopolarons in two-dimensional QDs
for all coupling strengths [45]. It is well-known that in at-
tempting to calculate the binding energy of bipolarons as
described above, a complete and satisfactory discussion of
the stability region requires a self consistent calculation of
free polaron energies from the bipolaron theory, or at least
a calculation within the same technique as done for bipo-
laron energies. From this point of view, the main advan-
tages of our approach are that firstly, it allows us to obtain
the single polaron ground-state energy in a self consistent
manner, as well as the bipolaron ground-state energy, and
secondly, it gives results which valid for a whole range of
electron-phonon coupling strengths.

The layout of the present paper is as follows. In Sec-
tion 2 we discuss the Hamiltonian of the system consisting
of two electrons coupled to LO phonons confined in a 2D
parabolic potential subject to a uniform magnetic field
using LLP-H transformations. Then we perform a varia-
tional calculation to the resulting effective Hamiltonian.
In Section 3 we examine the stability of 2D magnetobipo-
larons by introducing a self consistent procedure to obtain
the free polaron ground-state energy from the theory, and
we summarize the main points of our discussions by com-
paring the results with those found in the literature. In
Section 4 we present a brief conclusion.

2 Theory

We consider a system of two-interacting electrons coupled
to LO-phonons and subject to both a homogeneous mag-
netic field and a parabolic QD potential. This results in
the well-known Fröhlich bipolaron Hamiltonian

H =
2∑
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e
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]2

+
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, (1)

where |Vq|2 = (�ω0)
2 (2παr0/V q) [46] is the electron-

phonon interaction amplitude, b†q(bq) is the creation (anni-
hilation) operator of an optical phonon with a wave vector
q and energy �ω0, while p and r denote the momen-
tum and position operators of the electrons, respectively.
α and r0 =

√
�/2mω0 are the electron-phonon coupling

constant and polaron radius, respectively. ω• character-
izes the strength of a parabolic QD potential. By impos-
ing the center of mass position operator R = (r1 + r2) /2
and the relative position operator r = r1 − r2, along with
their canonically conjugate momenta P = p1 + p2 and
p = p1 − p2, respectively, the Hamiltonian of the whole
system can be divided in the usual way as H = HE + H0,
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(3)
respectively. In equation (2) we introduce µ = m/2, M =
2m, q = e/2 and Q = 2e. The ground-state trial wave
function for the Hamiltonian H is chosen to be |Ψ〉 =
U1U2 |0〉PH ⊗ |Ψ(r,R)〉, where |0〉PH is the vacuum state
of phonons, and

U1 = exp

[
−iλR ·

∑
q

q b†qbq

]
, (4)

and

U2 = exp

{∑
q

[
Fq(r)bq − F ∗

q (r)b†q
]}

, (5)

are the well-known LLP-H transformations. These two
successive canonical transformations provide results for
the whole range of electron-phonon coupling strengths
since they describe both weak and strong coupling varia-
tional solutions in the case of λ = 1 and λ = 0, respec-
tively. The effect of transformations equations (4, 5) into
the total Hamiltonian H can be observed by considering
U−1

1 bqU1 = bq exp[−iλq · r], U−1
1 PU1 = P−λ�

∑
q qb†qbq,

and U−1
2 bqU2 = bq −F ∗

q (r). For the sake of simplicity, we
restrict our attention to the diagonalized part of the ef-
fective Hamiltonian U−1

2 U−1
1 HU1U2 = H̃ , and we write

down the phonon related part as

H̃0 =
∑
q
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1
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, (6)

and we discard all the terms including bq(b†q), and higher
orders, since they vanish when applied to the vacuum. In
equation (6) Ωq (λ) is defined as

Ωq (λ) = ω0 +
λ2

�

2M
q2 − λ�

M
q·

[
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Q
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]
+

λ2
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q·

∑
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q′ |Fq′(r)|2 , (7)

and the last term on the right hand side of equa-
tion (7) gives no contribution to equation (6), i.e.,∑

q q |Fq(r)|2 = 0 due to the symmetry of the QD. The
next step in our variational scheme is to minimize equa-
tion (6) with respect to Fq(r). This can be done in several

ways as pointed out in reference [44]. A very convenient
way to do this is to take an Ansatz

Fq(r) = Qq cos
(q · r

2

)
+ Gq, (8)

where Qq = λ1Vq/(1 + λ2r
2
0q

2) and λ1, λ2 and Gq are
the variational parameters to be determined. This type of
choice for Fq(r) is analogous to that of Adamowski [11],
but for the r independent part of the trial wave function,
we follow a variational procedure to obtain the q depen-
dence of Gq as opposed to predicting it. After substituting
equation (8) into equation (6) we find
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∑
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where σ1 (q) = 〈cos(q · r/2)〉, σ (q) =
〈
cos2(q · r/2)

〉
,

ρ (q) = 〈exp(i(1 − λ)q · R)〉, and 〈· · · 〉 denotes the ex-
pectation value with respect to the electronic coordinates.
For the electronic part, if we choose the 2D harmonic oscil-
lator ground-state wave functions for both center of mass
and relative parts, i.e.,

Ψ (r,R) = N (γ, β) exp[− (
γ2r2 + β2R2

)
/2], (10)

and impose a symmetrical Coulomb gauge for the vector
potential, (as done in Ref. [41]), then every term includ-
ing the electronic average in equations (2) and (9) can
easily be calculated in terms of confluent hypergeometric
functions as such: σ1 (q) = 1F1(1, 1;−q2/16γ2), ρ (q) =
1F1(1, 1;−q2/16β2) and σ(q) =

[
1 + σ1(q2/4γ2)

]
/2,

where γ and β are variational parameters. After the min-
imization of H̃0 with respect to Gq we find the expression
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Substituting this result back into equation (9) and com-
bining the results with HE of equation (2), we find the
ground-state energy for the 2D magnetobipolaron system
to be:
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in which ω2 = ω2
• + ω2

c/4 and ωc = qB/µc = QB/Mc =
eB/mc are the hybrid and cyclotron frequencies, respec-
tively.

3 Results and discussion

Introducing new dimensionless variables r0γ = 1/γ and
r0β = 2/β, and converting the sum in equation (12) into
an integral over 2D volume in the usual way, while chang-
ing the variable q/4γ = x, the bipolaron ground state
energy in units of �ω0 can be rewritten as;
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where F (x2) represents the confluent hypergeometric
function 1F1(1, 1; x2).

In calculating the bipolaron binding energy, W =
2ESP − EBP , one has to take into account the free po-
laron energy ESP . As pointed out in the Introduction,
this is the main problem with bipolaron theory since, to
the very least, it must be calculated within the same tech-
nique and the same accuracy as done for the bipolaron.
Using our approximation scheme, we can extract the free
polaron energy in a self consistent way from the bipolaron
energy without referring to other approaches. After ob-
taining the energies with the same accuracies, we are able
to thoroughly analyze the stability region of the 2D mag-
netobipolarons, defined by the criteria W ≥ 0. In order to
see this, it is useful to look at limiting cases with special
values of variational parameters.

Firstly, by choosing λ = λ1 = 0, γ = β, η = 0 and
taking the related integrals appearing in equation (13),
we can easily obtain

E
2SP

=
4
γ2 +

1
4
ω2γ2 − 2α

√
π

1
γ

, (14)

where E
2SP

denotes the two single polaron energy. We
should emphasize here that, as also stated in reference [13]
for the 2D and 3D bipolaron problem, choosing γ equal
to β corresponds to taking a trial wave function with-
out any correlation, since from the definition, γ = β cor-
responds to taking 2γ = β in equation (10), and this
choice leads to a cancellation of terms r1 · r2, and there-
fore discards the angular correlations between the parti-
cles. Minimization with respect to γ yields a fourth or-
der equation in γ, as such ω2γ4 + 4α

√
πγ − 16 = 0. An

analytical solution to this equation is also possible as in-
dicated in reference [45]. However, for simplicity, in or-
der to get qualitative results, it is sufficient to analyze
its limiting values. In the case of strong electron-phonon
interaction and weak spatial confinement with or with-
out a magnetic field, α � ω, one finds γ = 4/

√
πα,

and hence the result E
2SP

= −πα2/4. This is the well-
known two non-interacting polaron ground-state energy
in the strong coupling limit in 2D. Another limiting case
is α � ω, and gives γ = 2/

√
ω. In this case, one finds

E
2SP

= 2ω − α
√

πω, which reduces to the results of ref-
erence [47] in the absence of a confinement potential, that
is, in the case of ω = ωc/2.

Secondly, by choosing λ = 1, ω → 0, γ → ∞ (γ → 0),
η = 0 and ω γ → 0 in equation (13), that is, in the absence
of both magnetic field and spatial confinement, we find

E
2SP

= πα

[
−λ1

λ3
+

λ2
1

8λ3
3

+
λ2

1

8λ3

]
, (15)

where its minimization with respect to λ1 and λ3 yields
λ1 = 2 and λ3 = 1. With these values, equation (15)
results in E

2SP
= −πα, which is the well-known result

for the self energy of two non-interacting polarons in the
intermediate region [48]. So, one can use equation (13) to
obtain single polaron energies in a self consistent way.

In order to investigate both magnetic field and size de-
pendence of the BPSR, we have solved equation (12) self
consistently and shown the numerical results in Figures 1a
and 1b. For comparison and clarity, Figure 1a includes
only the effect of a magnetic field on the BPSR in the
absence of confinement potential, while the other presents
the effect of spatial confinement together with a magnetic
field. As seen from Figure 1a, a polaron-bipolaron transi-
tion appears for αc = 3.2 at ωc = 0 and moves to lower α
values with increasing magnetic field. This differs from the
well-known path integral result by 10%, which amounts to
2.9. We note from the figure that the critical values of α for
ωc = 0, 1 and 2 are in reasonable agreement with those ob-
tained by the authors of references [38,39], in the absence
of a spatial confinement potential. They predict αc = 2.6
and 2.4 for ωc = 1 and 2, respectively. The latter differs
from our value of 2.1, by 14%, therefore these values are
not much different from each other, and are agreement
within about 10%. There is, however, a difference with
the α-dependence of the curves. By a rough comparison
of the behavior of the curves in Figure 1a and in Figures 4
of references [38,39], one can easily see that the BPSR is
narrow in references [38,39], while it is relatively wide in
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(a)

(b)

Fig. 1. Phase plane showing the boundaries of 2D BPSR in
which the condition W (α, η; ωc, ω•) = 0 is fulfilled, (a) in the
absence and (b) presence of a confining potential. α < αc and
α > αc corresponds to polaronic and bipolaronic regions, re-
spectively. The solid curves show the 2D bulk case. �• =

√
2/ω•

is the confinement length in units of the polaron radius r0.

our case, and is broadened considerably as the magnetic
field increases. Therefore in our approach, the BPSR is
very sensitive to increasing magnetic field. In order to em-
phasize this point further, and to distinguish the stability
regions, we also give a plot for ωc = 3 in the inset. It seems
that further increase of magnetic field yields αc = 0.6 and
causes an additional enlargement in the BPSR.

In Figure 1b we show the effect of spatial confinement
on the BPSR by again plotting the [U/

√
2α(= 1/1−η), α]

plane, together with the effect of a magnetic field. Ac-
cording to Figure 1b and its inset, a polaron-bipolaron
transition occurs at αc = 2.9 and 0.4 for QDs whose sizes
are of the order of two and one polaron radii, respectively,
in the absence of a magnetic field. Introducing a magnetic
field in such QDs with sizes of the order of two polaron
radius, leads to a remarkable increase in the BPSR, i.e. for
ωc = 1 one gets a wider BPSR with αc = 2.6. However,
for QDs whose sizes are of the order of the polaron radius,
there is no apparent change in the decrease of αc, and
therefore an increase in the BPSR with increasing mag-
netic field, i.e. ωc = 1, except for a tail as shown in the
inset of Figure 1b.

As also pointed out in reference [28], the physical pic-
ture behind the above discussion of Figure 1 can be ex-
plained as follows. In the bipolaron theory, boundaries of
the stability region depend sensitively on the region where
the screened Coulomb repulsion between electrons is com-
pensated by the phonon mediated attraction. For larger
inter-electron distances than the polaron radius, the long-
range character of the Coulomb repulsion does not allow
the formation of polaron pairing, therefore each electron
moves in its own polarization potential well. When the
distance between polarons is decreased to the order of a
few polaron radii, virtual phonon clouds surrounding each
electron start to overlap, and thus attraction suppresses
the repulsion. For distances smaller than the polaron ra-
dius, again, repulsion dominates due to its divergent na-
ture at the bipolaron center, while the attraction remains
finite at the origin. In other words, a stable bipolaron can
occur only at intermediate distances, i.e., |r1−r2| ∼ rp, de-
pending on the values of the material parameters. There-
fore, reducing the dimensionality of the system by a spa-
tial confinement and/or a magnetic field can be a favorable
feature for bipolaron formation.

4 Conclusion

We have presented a variational scheme based on the use
of LLP-H canonical transformations to explain how the
stability region of 2D magnetobipolarons confined in a 2D
parabolic QD potential depends on the material parame-
ters α and η, the size of the QD, and the strength of mag-
netic field. In our calculations, to derive both free polaron
and bipolaron energies, and hence determine the BPSR,
we have used an Ansatz similar to that of Adamowski [11],
and we have chosen Gaussian-Gaussian type trial wave-
functions for both center of mass and internal motion, as
a consequence of the confined nature of the problem. LLP-
H canonical transformations together with these Ansatzs
have allowed us to perform a self consistent calculation
of both single polaron and bipolaron ground-state ener-
gies, which are valid in the entire range of electron-phonon
coupling strengths. Here, we should emphasize again that
the difference between our Ansatz and that of Adamowski
lies only in the treatment of the r independent term of the
variational function. In order to determine this part of the
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Ansatz, we have followed a variational procedure to obtain
the q dependence of this term instead of predicting it. To
ensure that our calculation of the bipolaron ground-state
energy based on these Ansatzs yields two polaron ground-
state energies in a self consistent manner, we have also
made a number of checks for various limiting cases, and
found the well-known expressions for both strong [47] and
intermediate [48] coupling regimes.

Summarizing the important aspects of our work, we
have investigated a strong dependence of the BPSR on
both magnetic field and spatial confinement, as well as on
material parameters, in 2D structures. Our analysis re-
veals that (i) αc becomes remarkably small by decreasing
the size of QD, and therefore in QDs whose sizes are of or-
der of a few polaron radius it is possible to find bipolaron
states even in the case where the electron-phonon coupling
strength takes smaller values (α ∼ 1), (ii) the presence of
a magnetic field leads to a significant enhancement of the
BPSR in 2D QDs since it brings an additional magnetic
confinement in the lateral plane. We have also found that
our qualitative results are consistent with those observed
by Pokatilov et al. [28,30] in the absence of a magnetic
field, and in 3D parabolic QDs. Our results provide further
evidence for coexistence of polaron and bipolaron states in
nanostructures whose sizes are of the order of the polaron
radius.

As for the validity of our approach, it should be
noted that, although a comparison with BPSRs calculated
within our approach and those of references [38,39] indi-
cates that our approach provides a relatively wider BPSR
than those found in references [38,39], ours estimates the
critical value of η to be 0.079, whereas it is estimated to
be 0.158 [18] by the path integral approach. We should
further note two points. Firstly, we have assumed that
the QD is formed from a 2D system with zero thickness
by means of a 2D parabolic potential, whereas, in reality
these systems have finite thickness. Hence, one should re-
member that the polaron radius has to be greater than the
thickness of the 2D layer in order to have a stable bipo-
laron as demonstrated by Peeters and Devreese [49]. Sec-
ondly, we have expressed the energies and lengths used in
this work in units of �ω0 and r0 =

√
�/2mω0, respectively.

One should also note that the latter represents the polaron
radius when α < 1. As shown by Pokatilov et al. [50], when
α � 1 it is a complicated function of both electron-phonon
coupling strength and magnetic field, and thus a new scale
should be introduced in coordinate space.

Polaron-bipolaron transitions can be seen by using op-
tical absorption experiments since calculations on optical
and magneto-optical absorption of both polarons [51,52]
and bipolarons [53–55] clearly indicate the existence of
this transition. We hope that the results presented in this
paper will provide further experimental insight in inter-
preting the optical spectra in QDs.
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